Học TậpLớp 10

HĐ3 trang 28 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10

Mời các em cùng theo dõi bài học hôm nay với tiêu đề
HĐ3 trang 28 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10

Với giải HĐ3 trang 28 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 4: Hệ bất phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các em theo dõi bài học sau đây nhé:

Giải bài tập Toán lớp 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bạn đang xem: HĐ3 trang 28 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10

HĐ3 trang 28 Toán lớp 10: Xét biểu thức F(x, y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Toạ độ ba đình là O(0, 0), A(150, 0) và B(0; 150) (H.2.5). 

 Luyện tập 2 trang 29 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.

b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.

c) Nêu nhận xét về tổng x + y của điểm (X; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x, y) trên miền tam giác OAB.

Phương pháp giải:

a) Thay tọa độ điểm O, A, B vào F(x;y) và tính giá trị.

b) Lấy một điểm bất kì trong miền tam giác OAB.

Xác định dấu:

+ So sánh x với 0

+ So sánh y với 0

Đánh giá biểu thức F(x;y) dựa vào dấu của x và y, từ đó tìm giá trị nhỏ nhất của biểu thức.

c)

Dựa vào biểu thức

Giá trị lớn nhất: Tách 2x+3y =2.(x+y)+y và dựa vào việc đánh giá x+y và y ở bước trên để tìm giá trị lớn nhất.

Lời giải:

a) Thay tọa độ điểm O, A, B vào F(x;y) ta được:

F(0;0)=2.0+3.0=0

F(150;0)=2.150+3.0=300

F(0;150)=2.0+3.150=450.

b) Lấy một điểm bất kì trong miền tam giác OAB.

Vì miền OAB là miền nghiệm của hệ bất phương trình {x0y0x+y150 nên mọi điểm (x;y) thuộc miền OAB thỏa mãn x0.

Vì miền OAB là miền nghiệm của hệ bất phương trình {x0y0x+y150 nên mọi điểm (x;y) thuộc miền OAB thỏa mãn y0.

Vậy x0 và y0.

=> F(x;y)=2x+3y2.0+3.0=0

Vậy giá trị nhỏ nhất của F(x;y) trên miền OAB là 0.

c) Vì miền OAB là miền nghiệm của hệ bất phương trình {x0y0x+y150 nên mọi điểm (x;y) thuộc miền OAB thỏa mãn x+y150

Như vậy với mỗi điểm trong miền tam giác OAB thì đều có tổng x+y150

Quan sát miền OAB ta thấy điểm B(0;150) là điểm có tung độ lớn nhất nên mọi điểm (x;y) thuộc miền OAB đều có y150.

Vậy ta có: F(x;y)=2x+3y=2.(x+y)+y2.150+150=450

Dấu “=” xảy ra khi x+y=150 và y=150. Hay x=0, y=150.

Giá trị lớn nhất trên miền OAB là 450 tại điểm B.

Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Câu hỏi mở đầu trang 26 Toán lớp 10: Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hoà điều hoà hai chiều và điều hoà một chiều với số vốn ban đầu không vượt quá 1,2 tỷ đồng…

HĐ1 trang 26 Toán lớp 10: Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hoà loại hai chiều và một chiều mà cửa hàng cần nhập. Tính số tiền vốn mà cửa hàng phải bỏ ra để nhập hai loại máy điều hoà theo x và y…

Luyện tập 1 trang 27 Toán lớp 10: Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hoà loại hai chiều và một chiều mà cửa hàng cần nhập. Từ HĐ1, viết hệ bất phương trình hai ẩn x, y và chỉ ra một nghiệm của hệ này…

HĐ2 trang 28 Toán lớp 10: Cho đường thẳng d: x+y=150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B…

Luyện tập 2 trang 28 Toán lớp 10: Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt…

Vận dụng trang 30 Toán lớp 10: Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y…

Bài 2.4 trang 30 Toán lớp 10: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?…

Bài 2.5 trang 30 Toán lớp 10: Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau trên mặt phẳng tọa độ:…

Bài 2.6 trang 30 Toán lớp 10: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn, giá tiền 1 kg thịt bò là 250 nghìn đồng, 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn…

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

Bài 6: Hệ thức lượng trong tam giác

Trên đây là toàn bộ nội dung về bài học
HĐ3 trang 28 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10
. Hy vọng sẽ là tài liệu hữu ích giúp các em hoàn thành tốt bài tập của mình.

Đăng bởi: https://thcslequydoncaugiay.edu.vn/

Chuyên mục: Tài Liệu Học Tập

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button