Học TậpLớp 10

Giải Toán 10 trang 62 Tập 1 Kết nối tri thức

Mời các em cùng theo dõi bài học hôm nay với tiêu đề
Giải Toán 10 trang 62 Tập 1 Kết nối tri thức

Với Giải toán lớp 10 trang 62 Tập 1 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các em theo dõi bài học sau đây nhé:

 

Bạn đang xem: Giải Toán 10 trang 62 Tập 1 Kết nối tri thức

Giải Toán 10 trang 62 Tập 1 Kết nối tri thức

HĐ4 trang 62 Toán lớp 10: Trong mặt phẳng tọa độ Oxy, cho điểm M(xo;yo). Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung Oy (H.4.35)

a) Trên trục Ox, điểm P biểu diễn số nào? Biểu thị OP theo i và tính độ dài của OP theo xo.

b) Trên trục Oy, điểm Q biểu diễn số nào? Biểu thị OQ theo j và tính độ dài của OQ theo yo.

c) Dựa vào hình chữ nhật OPMQ, tính độ dài của OM theo xo,yo.

d) Biểu thị OM theo các vectơ i,j.

Phương pháp giải:

a) P biểu diễn hoành độ của điểm M.

b) Q biểu diễn tung độ của điểm M.

c) Tính độ dài của OM theo các cạnh của hình chữ nhật dựa vào định lí Pytago

d) Biểu thị OM theo các vectơ OPOQ (quy tắc hình bình hành)

Lời giải:

a) Vì P là hình chiếu vuông góc của M trên Ox nên điểm P biểu diễn hoành độ của điểm M là số xo

Ta có: vectơ OP cùng phương, cùng hướng với i và |OP|=xo=xo.|i|

OP=xo.i.

b) Vì Q là hình chiếu vuông góc của M trên Oy nên điểm Q biểu diễn tung độ của điểm M là số yo

Ta có: vectơ OQ cùng phương, cùng hướng với j và |OQ|=yo=yo.|j|

OQ=yo.j.

c) Ta có: OM=OM.

Mà OM2=OP2+MP2=OP2+OQ2=xo2+yo2

|OM|=xo2+yo2

d) Ta có: Tứ giác OPMQ là hình chữ nhật, cũng là hình bình hành  nên OM=OP+OQ

OM=xo.i+yo.j

HĐ5 trang 62 Toán lớp 10: Trong mặt phẳng tọa độ Oxy, cho các điểm M(x;y) và N(x’; y’)

a) Tìm tọa độ của các vectơ OM,ON.

b) Biểu thị vectơ MN theo các vectơ OM,ON và tọa độ của MN.

c) Tìm độ dài của vectơ MN

Phương pháp giải:

a) Tọa độ của vectơ OM,ON chính là tọa độ của M, N

b) Biểu thị vectơ MN theo các vectơ OM,ON bằng quy tắc hiệu.

Tìm tọa độ của MN dựa vào biểu thị theo hiệu ở trên và tọa độ của vectơ OM,ON đã biết.

c) Độ dài của vectơ MN(a;b) là |MN|=a2+b2

Lời giải:

a) Vì điểm M có tọa độ (x; y) nên vectơ OM có tọa độ (x; y).

Và điểm N có tọa độ (x’; y’) nên vectơ ON có tọa độ (x’; y’).

b) Ta có:  MN=ONOM (quy tắc hiệu)

Mà OM có tọa độ (x; y); ON có tọa độ (x’; y’).

MN=(x;y)(x;y)=(xx;yy)

c) Vì MN có tọa độ (xx;yy) nên

Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Giải Toán 10 trang 59 Tập 1 

Giải Toán 10 trang 60 Tập 1 

Giải Toán 10 trang 61 Tập 1 

Giải Toán 10 trang 62 Tập 1 

Giải Toán 10 trang 63 Tập 1 

Giải Toán 10 trang 64 Tập 1 

Giải Toán 10 trang 65 Tập 1 

Trên đây là toàn bộ nội dung về bài học
Giải Toán 10 trang 62 Tập 1 Kết nối tri thức
. Hy vọng sẽ là tài liệu hữu ích giúp các em hoàn thành tốt bài tập của mình.

Đăng bởi: https://thcslequydoncaugiay.edu.vn/

Chuyên mục: Tài Liệu Học Tập

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button